English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nondipole Coulomb sub-barrier ionization dynamics and photon momentum sharing

MPS-Authors
/persons/resource/persons209470

He,  Pei-Lun
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

Klaiber,  Michael
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30572

Hatsagortsyan,  Karen Zaven
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30659

Keitel,  Christoph H.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2107.01643.pdf
(Preprint), 614KB

Supplementary Material (public)
There is no public supplementary material available
Citation

He, P.-L., Klaiber, M., Hatsagortsyan, K. Z., & Keitel, C. H. (2022). Nondipole Coulomb sub-barrier ionization dynamics and photon momentum sharing. Physical Review A, 105(3): L031102. doi:10.1103/PhysRevA.105.L031102.


Cite as: https://hdl.handle.net/21.11116/0000-000A-27CA-7
Abstract
The nondipole under-the-barrier dynamics of the electron during strong-field
tunneling ionization is investigated, examining the role of the Coulomb field
of the atomic core. The common analysis in the strong field approximation is
consequently generalised to include the leading light-front non-dipole Coulomb
corrections and demonstrates the counter-intuitive impact of the sub-barrier
Coulomb field. Despite its attractive nature, the sub-barrier Coulomb field
increases the photoelectron nondipole momentum shift along the laser
propagation direction, involving a strong dependence on the laser field. The
scaling of the effect with respect to the principal quantum number and angular
momentum of the bound state is found. We demonstrate that the signature of
Coulomb induced sub-barrier effects can be identified in the asymptotic
photoelectron momentum distribution via a comparative study of the
field-dependent longitudinal momentum shift for different atomic species with
state-of-the-art experimental techniques of mid-infrared lasers.