Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Modulation of cathodoluminescence emission by interference with external light

MPG-Autoren
/persons/resource/persons270793

Kfir,  O.
Department of Ultrafast Dynamics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons270504

Ropers,  C.       
Department of Ultrafast Dynamics, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

3373413.pdf
(Verlagsversion), 5MB

2101.07748.pdf
(Preprint), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Di Giulio, V., Kfir, O., Ropers, C., & Garcia de Abajo, F. J. (2021). Modulation of cathodoluminescence emission by interference with external light. ACS Nano, 15(4), 7290-7304. doi:10.1021/acsnano.1c00549.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-2352-2
Zusammenfassung
Spontaneous processes triggered in a sample by free electrons, such as cathodoluminescence, are commonly regarded and detected as stochastic events. Here, we supplement this picture by showing through first-principles theory that light and free-electron pulses can interfere when interacting with a nanostructure, giving rise to a modulation in the spectral distribution of the cathodoluminescence light emission that is strongly dependent on the electron wave function. Specifically, for a temporally focused electron, cathodoluminescence can be canceled upon illumination with a spectrally modulated dimmed laser that is phase-locked relative to the electron density profile. We illustrate this idea with realistic simulations under attainable conditions in currently available ultrafast electron microscopes. We further argue that the interference between excitations produced by light and free electrons enables the manipulation of the ultrafast materials response by combining the spectral and temporal selectivity of the light with the atomic resolution of electron beams.