Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Combinatorial effects on gene expression at the Lbx1/Fgf8 locus resolve Split-Hand/Foot Malformation type 3

MPG-Autoren
/persons/resource/persons244911

Cova,  Giulia
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons244913

Glaser,  Juliane
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons194839

Schöpflin,  Robert
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons232921

Ali,  Salaheddine
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons244933

Prada-Medina,  César A.
Human Molecular Genomics (Malte Spielmann), Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons73895

Franke,  Martin
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

Falcone,  Rita
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

Federer,  Miriam
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50647

Wittler,  Lars
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50598

Timmermann,  Bernd
Sequencing Core Facility (Head: Bernd Timmermann), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50565

Spielmann,  Malte
Human Molecular Genomics (Malte Spielmann), Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50437

Mundlos,  Stefan
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Cova et al_2022.pdf
(Preprint), 7MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cova, G., Glaser, J., Schöpflin, R., Ali, S., Prada-Medina, C. A., Franke, M., et al. (2022). Combinatorial effects on gene expression at the Lbx1/Fgf8 locus resolve Split-Hand/Foot Malformation type 3. bioRxiv (Preprint Server). doi:10.1101/2022.02.09.479724.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-29C7-8
Zusammenfassung
Split-Hand/Foot Malformation type 3 (SHFM3) is a congenital limb malformation associated
with tandem duplications at the LBX1/FGF8 locus. Yet, the disease patho-mechanism remains
unsolved. Here we investigated the functional consequences of SHFM3-associated
rearrangements on chromatin conformation and gene expression in vivo in transgenic mice.
We show that the Lbx1/Fgf8 locus consists of two separate, but interacting, regulatory
domains. Re-engineering of a SHFM3-associated duplication and a newly reported inversion in
mice resulted in restructuring of the chromatin architecture. This led to an ectopic activation
of the Lbx1 and Btrc genes in the apical ectodermal ridge (AER) in an Fgf8-like pattern. Artificial
repositioning of the AER-specific enhancers of Fgf8 was sufficient to induce misexpression of
Lbx1 and Btrc. We provide evidence that the SHFM3 phenotype is the result of a combinatorial
effect on gene misexpression and dosage in the developing limb. Our results reveal new
insights into the molecular mechanism underlying SHFM3 and provide novel conceptual
framework for how genomic rearrangements can cause gene misexpression and disease.