English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

Introduction to quantum optics

MPS-Authors
/persons/resource/persons61068

Navarrete-Benlloch,  Carlos
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2203.13206.pdf
(Preprint), 32MB

Supplementary Material (public)

2022_Navarrete.png
(Supplementary material), 5KB

Citation

Navarrete-Benlloch, C. (2022). Introduction to quantum optics. arXiv 2203.13206.


Cite as: https://hdl.handle.net/21.11116/0000-000A-2A2A-9
Abstract
These are the lecture notes for a course that I am teaching at Zhiyuan College of Shanghai Jiao Tong University, though the first draft was created for a previous course I taught at the University of Erlangen-Nuremberg in Germany. It has been designed for students who have only had basic training on quantum mechanics, and hence, the course is suited for people at all levels. The notes are a work in progress, meaning that some proofs and many figures are still missing. However, I've tried my best to write everything in such a way that a reader can follow naturally all arguments and derivations even with these missing bits. Quantum optics treats the interaction between light and matter. We may think of light as the optical part of the electromagnetic spectrum, and matter as atoms. However, modern quantum optics covers a wild variety of systems, including superconducting circuits, confined electrons, excitons in semiconductors, defects in solid state, or the center-of-mass motion of micro-, meso-, and macroscopic systems. Moreover, quantum optics is at the heart of the field of quantum information. The ideas and experiments developed in quantum optics have also allowed us to take a fresh look at many-body problems and even high-energy physics. In addition, quantum optics holds the promise of testing foundational problems in quantum mechanics as well as physics beyond the standard model in table-sized experiments. Quantum optics is therefore a topic that no future researcher in quantum physics should miss.