English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Transplastomic approaches for metabolic engineering

MPS-Authors
/persons/resource/persons97077

Bock,  R.
Organelle Biology and Biotechnology, Department Bock, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bock, R. (2022). Transplastomic approaches for metabolic engineering. Current Opinion in Plant Biology, 66: 102185. doi:10.1016/j.pbi.2022.102185.


Cite as: http://hdl.handle.net/21.11116/0000-000A-2F53-5
Abstract
The plastid (chloroplast) genome of seed plants represents an attractive target of metabolic pathway engineering by genetic transformation. Although the plastid genome is relatively small, it can accommodate large amounts of foreign DNA that precisely integrates via homologous recombination, and is largely excluded from pollen transmission due to the maternal mode of plastid inheritance. Since the engineering of metabolic pathways often requires the expression of multiple transgenes, the possibility to conveniently stack transgenes in synthetic operons makes the transplastomic technology particularly appealing in the area of metabolic engineering. Absence of epigenetic gene silencing mechanisms from plastids and the possibility to achieve high transgene expression levels further add to the attractiveness of plastid genome transformation. This review focuses on engineering principles and available tools for the transplastomic expression of enzymes and pathways, and highlights selected recent applications in metabolic engineering.