English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils

MPS-Authors
/persons/resource/persons14824

Becker,  S.
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons16093

Zweckstetter,  M.
Research Group of Protein Structure Determination using NMR, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

3375198.pdf
(Publisher version), 10MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Dauer née Joppe, K., Tatenhorst, L., Caldi Gomes, L., Zhang, S., Parvaz, M., Carboni, E., et al. (2021). Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils. Journal of Neurochemistry, 159(3), 554-573. doi:10.1111/jnc.15461.


Cite as: https://hdl.handle.net/21.11116/0000-000A-3050-5
Abstract
Regional iron accumulation and α-synuclein (α-syn) spreading pathology within the central nervous system are common pathological findings in Parkinson's disease (PD). Whereas iron is known to bind to α-syn, facilitating its aggregation and regulating α-syn expression, it remains unclear if and how iron also modulates α-syn spreading. To elucidate the influence of iron on the propagation of α-syn pathology, we investigated α-syn spreading after stereotactic injection of α-syn preformed fibrils (PFFs) into the striatum of mouse brains after neonatal brain iron enrichment. C57Bl/6J mouse pups received oral gavage with 60, 120, or 240 mg/kg carbonyl iron or vehicle between postnatal days 10 and 17. At 12 weeks of age, intrastriatal injections of 5-µg PFFs were performed to induce seeding of α-syn aggregates. At 90 days post-injection, PFFs-injected mice displayed long-term memory deficits, without affection of motor behavior. Interestingly, quantification of α-syn phosphorylated at S129 showed reduced α-syn pathology and attenuated spreading to connectome-specific brain regions after brain iron enrichment. Furthermore, PFFs injection caused intrastriatal microglia accumulation, which was alleviated by iron in a dose-dependent way. In primary cortical neurons in a microfluidic chamber model in vitro, iron application did not alter trans-synaptic α-syn propagation, possibly indicating an involvement of non-neuronal cells in this process. Our study suggests that α-syn PFFs may induce cognitive deficits in mice independent of iron. However, a redistribution of α-syn aggregate pathology and reduction of striatal microglia accumulation in the mouse brain may be mediated via iron-induced alterations of the brain connectome.