Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dynamical component exchange in a model phase separating system: an NMR-based approach

MPG-Autoren
/persons/resource/persons16093

Zweckstetter,  M.
Research Group of Protein Structure Determination using NMR, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons36515

Rezaei-Ghaleh,  N.
Research Group of Protein Structure Determination using NMR, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

3375686.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pantoja, C. F., Zweckstetter, M., & Rezaei-Ghaleh, N. (2022). Dynamical component exchange in a model phase separating system: an NMR-based approach. PhysChemChemPhys, 24(10), 6169-6175. doi:10.1039/D2CP00042C.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-31EE-3
Zusammenfassung
Biomolecular phase separation plays a key role in the spatial organization of cellular activities. Dynamic formation and rapid component exchange between phase separated cellular bodies and their environment are crucial for their function. Here, we employ a well-established phase separating model system, namely, a triethylamine (TEA)–water mixture, and develop an NMR approach to detect the exchange of scaffolding TEA molecules between separate phases and determine the underlying exchange rate. We further demonstrate how the advantageous NMR properties of fluorine nuclei provide access to otherwise inaccessible exchange processes of a client molecule. The developed NMR-based approach allows quantitative monitoring of the effect of regulatory factors on component exchange and facilitates “exchange”-based screening and optimization of small molecules against druggable biomolecular targets located inside condensed phases.