English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

pH-triggered assembly of endomembrane multicompartments in synthetic cells

MPS-Authors
/persons/resource/persons250630

Lussier,  Félix
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons224532

Schröter,  Martin
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons271480

Diercks,  Nicolas J.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons232747

Jahnke,  Kevin
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons249566

Weber,  Cornelia
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons201484

Frey,  Christoph
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons84351

Platzman,  Ilia
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lussier, F., Schröter, M., Diercks, N. J., Jahnke, K., Weber, C., Frey, C., et al. (2021). pH-triggered assembly of endomembrane multicompartments in synthetic cells. ACS Synthetic Biology, 11, 366-382. doi:10.1021/acssynbio.1c00472.


Cite as: https://hdl.handle.net/21.11116/0000-000A-36C2-E
Abstract
By using electrostatic interactions as driving force to assemble vesicles, the droplet-stabilized method was recently applied to reconstitute and encapsulate proteins, or compartments, inside giant unilamellar vesicles (GUVs) to act as minimal synthetic cells. However, the droplet-stabilized approach exhibits low production efficiency associated with the troublesome release of the GUVs from the stabilized droplets, corresponding to a major hurdle for the droplet-stabilized approach. Herein, we report the use of pH as a potential trigger to self-assemble droplet-stabilized GUVs (dsGUVs) by either bulk or droplet-based microfluidics. Moreover, pH enables the generation of compartmentalized GUVs with flexibility and robustness. By co-encapsulating pH-sensitive small unilamellar vesicles (SUVs), negatively charged SUVs, and/or proteins, we show that acidification of the droplets efficiently produces dsGUVs while sequestrating the co-encapsulated material. Most importantly, the pH-mediated assembly of dsGUVs significantly improves the production efficiency of free-standing GUVs (i.e., released from the stabilizing-droplets) compared to its previous implementation.