Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pseudoheterodyne near-field imaging at kHz repetition rates via quadrature-assisted discrete demodulation

MPG-Autoren
/persons/resource/persons232524

Palato,  Samuel
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Institut für Chemie, Humboldt-Universität zu Berlin;

/persons/resource/persons271708

Schwendke,  Philipp
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Institut für Chemie, Humboldt-Universität zu Berlin;

/persons/resource/persons271717

Große,  Nicolai
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22128

Stähler,  Julia
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
Institut für Chemie, Humboldt-Universität zu Berlin;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

5.0087187.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Palato, S., Schwendke, P., Große, N., & Stähler, J. (2022). Pseudoheterodyne near-field imaging at kHz repetition rates via quadrature-assisted discrete demodulation. Applied Physics Letters, 120(13): 131601. doi:10.1063/5.0087187.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-3926-C
Zusammenfassung
Scattering-type scanning near-field optical microscopy enables the measurement of optical constants of a surface beyond the diffraction limit.
Its compatibility with pulsed sources is hampered by the requirement of a high-repetition rate imposed by lock-in detection. We describe a
sampling method, called quadrature-assisted discrete (quad) demodulation, which circumvents this constraint. Quad demodulation operates
by measuring the optical signal and the modulation phases for each individual light pulse. This method retrieves the near-field signal in the
pseudoheterodyne mode, as proven by retraction curves and near-field images. Measurement of the near-field using a pulsed femtosecond
amplifier and quad demodulation is in agreement with results obtained using a CW laser and the standard lock-in detection method.