English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

“We are here!” Oxygen functional groups in carbons for electrochemical applications

MPS-Authors
/persons/resource/persons260306

Jerigová,  Mariá
Nieves Lopez Salas, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons271815

Odziomek,  Mateusz
Nieves Lopez Salas, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons228884

Lopez Salas,  Nieves       
Nieves Lopez Salas, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 7MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Jerigová, M., Odziomek, M., & Lopez Salas, N. (2022). “We are here!” Oxygen functional groups in carbons for electrochemical applications. ACS Omega, 7(14), 11544-11554. doi:10.1021/acsomega.2c00639.


Cite as: https://hdl.handle.net/21.11116/0000-000A-3CE7-F
Abstract
Heteroatom doping of carbon networks may introduce active functional groups on the surface of the material, induce electron density changes that alter the polarity of the carbon surface, promote the formation of binding sites for molecules or ions, or make the surface catalytically active for different reactions, among many other alterations. Thus, it is no surprise that heteroatom doping has become a well-established strategy to enhance the performance of carbon-based materials for applications ranging from water remediation and gas sorption to energy storage and conversion. Although oxygen functionalization is sometimes inevitable (i.e., many carbon precursors contain oxygen functionalities), its participation in carbon materials performance is often overlooked on behalf of other heteroatoms (mainly nitrogen). In this Mini-review, we summarize recent and relevant publications on the effect that oxygen functionalization has on carbonaceous materials performance in different electrochemical applications and some strategies to introduce such functionalization purposely. Our aim is to revert the current tendency to overlook it and raise the attention of the materials science community on the benefits of using oxygen functionalization in many state-of-the-art applications.