English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sensitivity of regional monsoons to idealised equatorial volcanic eruption of different sulfur emission strengths

MPS-Authors
/persons/resource/persons211004

D'Agostino,  Roberta
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37356

Timmreck,  Claudia
Stratospheric Forcing and Climate, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

D'Agostino, R., & Timmreck, C. (2022). Sensitivity of regional monsoons to idealised equatorial volcanic eruption of different sulfur emission strengths. Environmental Research Letters, 17: 054001. doi:10.1088/1748-9326/ac62af.


Cite as: https://hdl.handle.net/21.11116/0000-000A-39C0-D
Abstract
The impact of volcanic forcing on tropical precipitation is investigated in a new set of sensitivity experiments within the Max Planck Institute Grand Ensemble framework. Five ensembles are created, each containing 100 realizations for an idealized "Pinatubo-like" equatorial volcanic eruption with emissions covering a range of 2.5 - 40 Tg sulfur (S). The ensembles provide an excellent database to disentangle the influence of volcanic forcing on monsoons and tropical hydroclimate over the wide spectrum of the climate's internal variability. Monsoons are generally weaker for two years after volcanic eruptions and their weakening is a function of emissions. However, only a stronger than Pinatubo-like eruption ($\geq$ 10 Tg S) leads to significant and substantial monsoon changes, and some regions (such as North and South Africa, South America and South Asia) are much more sensitive to this kind of forcing than the others. The decreased monsoon precipitation is strongly tied to the weakening of the regional tropical overturning. The reduced atmospheric net energy input and increased gross moist stability at the Hadley circulation updraft due to the equatorial volcanic eruption, require a slowdown of the circulation as a consequence of less moist static energy exported away from the ITCZ