English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Computational models in the service of X-ray and cryo-electron microscopy structure determination

MPS-Authors
/persons/resource/persons77670

Albrecht,  R
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Molecular Recognition and Catalysis Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271510

Hartmann,  MD
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Molecular Recognition and Catalysis Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons78342

Lupas,  AN
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kryshtafovych, A., Moult, J., Albrecht, R., Chang, G., Cao, K., Fraser, A., et al. (2021). Computational models in the service of X-ray and cryo-electron microscopy structure determination. Proteins: Structure, Function, and Bioinformatics, 89(12), 1633-1646.


Cite as: https://hdl.handle.net/21.11116/0000-000A-3D51-7
Abstract
Critical assessment of structure prediction (CASP) conducts community experiments to determine the state of the art in computing protein structure from amino acid sequence. The process relies on the experimental community providing information about not yet public or about to be solved structures, for use as targets. For some targets, the experimental structure is not solved in time for use in CASP. Calculated structure accuracy improved dramatically in this round, implying that models should now be much more useful for resolving many sorts of experimental difficulties. To test this, selected models for seven unsolved targets were provided to the experimental groups. These models were from the AlphaFold2 group, who overall submitted the most accurate predictions in CASP14. Four targets were solved with the aid of the models, and, additionally, the structure of an already solved target was improved. An a posteriori analysis showed that, in some cases, models from other groups would also be effective. This paper provides accounts of the successful application of models to structure determination, including molecular replacement for X-ray crystallography, backbone tracing and sequence positioning in a cryo-electron microscopy structure, and correction of local features. The results suggest that, in future, there will be greatly increased synergy between computational and experimental approaches to structure determination.