English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Influence of environmental temperature on mouth-form plasticity in Pristionchus pacificus acts through daf-11-dependent cGMP signaling

MPS-Authors
/persons/resource/persons272113

Lenuzzi,  M
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271111

Witte,  H
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272119

Riebesell,  M
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons50497

Rödelsperger,  C
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;
Evolutionary Genomics and Bioinformatics Group, Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271084

Sommer,  RJ
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lenuzzi, M., Witte, H., Riebesell, M., Rödelsperger, C., Hong, R., & Sommer, R. (2023). Influence of environmental temperature on mouth-form plasticity in Pristionchus pacificus acts through daf-11-dependent cGMP signaling. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution, 340(2), 214-224. doi:10.1002/jez.b.23094.


Cite as: https://hdl.handle.net/21.11116/0000-000A-4B9A-5
Abstract
Mouth-form plasticity in the nematode Pristionchus pacificus has become a powerful system to identify the genetic and molecular mechanisms associated with developmental (phenotypic) plasticity. In particular, the identification of developmental switch genes that can sense environmental stimuli and reprogram developmental processes has confirmed long-standing evolutionary theory. However, how these genes are involved in the direct sensing of the environment, or if the switch genes act downstream of another, primary environmental sensing mechanism, remains currently unknown. Here, we study the influence of environmental temperature on mouth-form plasticity. We find that environmental temperature does influence mouth-form plasticity in most of the 10 wild isolates of P. pacificus tested in this study. We used one of these strains, P. pacificus RSA635, for detailed molecular analysis. Using forward and reverse genetic technology including CRISPR/Cas9, we show that mutations in the guanylyl cyclase Ppa-daf-11, the Ppa-daf-25/AnkMy2, and the cyclic nucleotide-gated channel Ppa-tax-2 eliminate the response to elevated temperatures. Together, our study indicates that DAF-11, DAF-25, and TAX-2 have been co-opted for environmental sensing during mouth-form plasticity regulation in P. pacificus.