Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Zeitschriftenartikel

Inter-subunit coupling enables fast CO2-fixation by reductive carboxylases

MPG-Autoren
/persons/resource/persons15155

Grubmüller,  H.
Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons15496

Vöhringer-Martinez,  E.
Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

DeMirci, H., Rao, Y., Stoffel, G. M., Vögeli, B., Schell, K., Gomez, A., et al. (2022). Inter-subunit coupling enables fast CO2-fixation by reductive carboxylases. ACS Central Science, In Press. doi:10.1021/acscentsci.2c00057.


Zusammenfassung
Enoyl-CoA carboxylases/reductases (ECRs) are some of the most efficient CO2-fixing enzymes described to date. However, the molecular mechanisms underlying the extraordinary catalytic activity of ECRs on the level of the protein assembly remain elusive. Here we used a combination of ambient-temperature X-ray free electron laser (XFEL) and cryogenic synchrotron experiments to study the structural organization of the ECR from Kitasatospora setae. The K. setae ECR is a homotetramer that differentiates into a pair of dimers of open- and closed-form subunits in the catalytically active state. Using molecular dynamics simulations and structure-based mutagenesis, we show that catalysis is synchronized in the K. setae ECR across the pair of dimers. This conformational coupling of catalytic domains is conferred by individual amino acids to achieve high CO2-fixation rates. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intrasubunit communications of this remarkably efficient CO2-fixing enzyme during catalysis.