Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

A New Era of Quantum Materials Mastery and Quantum Simulators In and Out of Equilibrium

MPG-Autoren
/persons/resource/persons245033

Kennes,  D. M.
Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, ;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science (CFEL), Hamburg;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science (CFEL), Hamburg;
Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York;
Nano-Bio Spectroscopy Group and ETSF, Universidad del Paìs Vasco UPV/EHU;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2204.11928.pdf
(Preprint), 17MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kennes, D. M., & Rubio, A. (2022). A New Era of Quantum Materials Mastery and Quantum Simulators In and Out of Equilibrium.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-5C1D-0
Zusammenfassung
We provide a perspective on the burgeoning field of controlling quantum materials at will and its potential for quantum simulations in and out equilibrium. After briefly outlining a selection of key recent advances in controlling materials using novel high fluence lasers as well as in innovative approaches for novel quantum materials synthesis (especially in the field of twisted two-dimensional solids), we provide a vision for the future of the field. By merging state of the art developments we believe it is possible to enter a new era of quantum materials mastery, in which exotic and for the most part evasive collective as well as topological phenomena can be controlled in a versatile manner. This could unlock functionalities of unprecedented capabilities, which in turn can enable many novel quantum technologies in the future.