English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Quantitative 3D Mapping of Cr and PCr Concentrations at 3T using Snapshot AREX CEST MRI

MPS-Authors
/persons/resource/persons216025

Herz,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214560

Zaiss,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Perlman, O., Coll-Fon, J., Herz, K., Zaiss, M., Nguyen, C., & Farrar, C. (2022). Quantitative 3D Mapping of Cr and PCr Concentrations at 3T using Snapshot AREX CEST MRI. Poster presented at Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting (ISMRM 2022), London, UK.


Cite as: https://hdl.handle.net/21.11116/0000-000A-5C55-0
Abstract
The dynamics of creatine and phosphocreatine distributions provide an important means for assessing metabolic function. While CEST-weighted MRI allows for the imaging of metabolite alterations, it is affected by semisolid-MT, spillover, and T1 contributions, and is typically analyzed on a two-dimensional image, given the inherently long acquisition times. Here, we performed 3D quantitative mapping of Cr and PCr concentrations in the human calf muscle at 3T, using a rapid snapshot-CEST protocol followed by apparent exchange-dependent relaxation (AREX) analysis. Significant (p<0.001) changes in the concentrations of both creatine and phosphocreatine were measured during exercise, in agreement with the literature.