English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atomic Scale Control of Spin Current Transmission at Interfaces

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

acs.nanolett.1c04358.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Wahada, M. A., Şaşıoğlu, E., Hoppe, W., Zhou, X., Deniz, H., Rouzegar, R., et al. (2022). Atomic Scale Control of Spin Current Transmission at Interfaces. Nano Letters, 22(9), 3539-3544. doi:10.1021/acs.nanolett.1c04358.


Cite as: https://hdl.handle.net/21.11116/0000-000A-6164-8
Abstract
Ferromagnet/heavy metal bilayers represent a central building block for spintronic devices where the magnetization of the ferromagnet can be controlled by spin currents generated in the heavy metal. The efficiency of spin current generation is paramount. Equally important is the efficient transfer of this spin current across the ferromagnet/heavy metal interface. Here, we show theoretically and experimentally that for Ta as heavy metal the interface only partially transmits the spin current while this effect is absent when Pt is used as heavy metal. This is due to magnetic moment reduction at the interface caused by 3d–5d hybridization effects. We show that this effect can be avoided by atomically thin interlayers. On the basis of our theoretical model we conclude that this is a general effect and occurs for all 5d metals with less than half-filled 5d shell.