Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

CO2 emission rates from sedentary subjects under controlled laboratory conditions

MPG-Autoren
/persons/resource/persons230353

Li,  Mengze
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101364

Williams,  Jonathan
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sakamoto, M., Li, M., Kuga, K., Ito, K., Beko, G., Williams, J., et al. (2022). CO2 emission rates from sedentary subjects under controlled laboratory conditions. Building and environment: the international journal of building science and its applications, 211: 108735. doi:10.1016/j.buildenv.2021.108735.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-6508-C
Zusammenfassung
We determined carbon dioxide (CO2) emission rates from sedentary subjects performing light work on tablets or smartphones in controlled chamber exposures. Five groups, each consisting of four people (four groups with two females and two males and one with three males and one female), stayed in a 22.5 m3 stainless steel chamber under different environmental conditions for 3 h in the morning and then 2,5 h in the afternoon after having a light lunch. Three groups consisted of young adults (college students), one of seniors, and one of teenagers. The chamber was ventilated with outdoor air at 3.2 h−1 (per person rate was 5 L/s). The CO2 emission rates per person were calculated using a single-zone mass-balance equation and the measured CO2 concentration once steady state had been reached. Per person emission rates varied between 14.1 and 16.8 L/h in the morning and 15.9–17.8 L/h in the afternoon; higher levels in the afternoon were probably caused by the increased metabolism from diet-induced thermogenesis (DIT). Emission rates were higher with increased temperature when the participants felt warm, but did not change with increased relative humidity or ozone concentration. They differed to some extent from those estimated using ISO 8996 and ASTM DS 6245, but were similar to published measured CO2 emission rates. The present results require confirmation with more people and measurements of CO2 emission rates using the calorimetric method.