English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Controlling Floquet states on ultrashort time scales

MPS-Authors
/persons/resource/persons222317

Sato,  S.
Center for Computational Sciences, University of Tsukuba;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons221951

Hübener,  H.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons221949

de Giovannini,  U.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Università degli Studi di Palermo, Dipartimento di Fisica e Chimica-Emilio Segrè;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

s41467-022-34973-4.pdf
(Publisher version), 3MB

suppl.zip
(Publisher version), 5MB

Supplementary Material (public)

41467_2022_34973_MOESM3_ESM.zip
(Supplementary material), 27MB

Citation

Lucchini, M., Medeghini, F., Wu, Y., Vismarra, F., Borrego-Varillas, R., Crego, A., et al. (2022). Controlling Floquet states on ultrashort time scales. Nature Communications, 13(1): 7103. doi:10.1038/s41467-022-34973-4.


Cite as: https://hdl.handle.net/21.11116/0000-000A-6352-A
Abstract
The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be observed already with a driving field that lasts for only 10 cycles. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet theory. By demonstrating that the amplitude and number of Floquet-like sidebands in the photoelectron spectrum can be controlled not only with the driving laser pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering.