Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Controlling Floquet states on ultrashort time scales

MPG-Autoren
/persons/resource/persons222317

Sato,  S.
Center for Computational Sciences, University of Tsukuba;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons221951

Hübener,  H.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Università degli Studi di Palermo, Dipartimento di Fisica e Chimica-Emilio Segrè;

/persons/resource/persons221949

de Giovannini,  U.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Università degli Studi di Palermo, Dipartimento di Fisica e Chimica-Emilio Segrè;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2205.00788.pdf
(Preprint), 667KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lucchini, M., Medeghini, F., Wu, Y., Vismarra, F., Borrego-Varillas, R., Crego, A., et al. (2022). Controlling Floquet states on ultrashort time scales.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-6352-A
Zusammenfassung
The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be established already within 10 cycles of the driving field. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet theory. By demonstrating that the population of the Floquet sidebands can be controlled not only with the driving laser pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering.