English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Two new Species of Pristionchus (Nematoda: Diplogastridae) include the Gonochoristic Sister Species of P. fissidentatus

MPS-Authors
/persons/resource/persons272157

Herrmann,  M
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272426

Weiler,  C
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272929

Yoshida,  K
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons50497

Rödelsperger,  C
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271084

Sommer,  RJ
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Herrmann, M., Kanzaki, N., Weiler, C., Yoshida, K., Rödelsperger, C., & Sommer, R. (2019). Two new Species of Pristionchus (Nematoda: Diplogastridae) include the Gonochoristic Sister Species of P. fissidentatus. Journal of Nematology, 51: e2019-24. doi:10.21307/jofnem-2019-024.


Cite as: https://hdl.handle.net/21.11116/0000-000A-68D5-1
Abstract

The genus Pristionchus (Kreis, 1932) consists of more than 30 soil nematode species that are often found in association with scarab beetles. Three major radiations have resulted in the "maupasi species group" in America, the "pacificus species group" in Asia, and the "lheritieri species group," which contains species from Europe and Asia. Phylogenetic analysis indicates that a group of three species, including the gonochorists P. elegans and P. bucculentus and the hermaphrodite P. fissidentatus, is basal to the above-mentioned radiations. Two novel species are described here: Pristionchus paulseni sp. n. from Taiwan and P. yamagatae sp. n. from Japan by means of morphology, morphometrics and genome-wide transcriptome sequence analysis. Previous phylotranscriptomic analysis of the complete Pristionchus genus recognized P. paulseni sp. n. as the sister species of P. fissidentatus, and thus its importance for macro-evolutionary studies. Specifically, the gonochorist P. paulseni sp. n. and the hermaphrodite P. fissidentatus form a species pair that is the sister group to all other described Pristionchus species. P. paulseni sp. n. has two distinct mouth forms, supporting the notion that the mouth dimorphism is ancestral in the genus Pristionchus.

The genus Pristionchus (Kreis, 1932) consists of more than 30 soil nematode species that are often found in association with scarab beetles. Three major radiations have resulted in the “maupasi species group” in America, the “pacificus species group” in Asia, and the “lheritieri species group,” which contains species from Europe and Asia. Phylogenetic analysis indicates that a group of three species, including the gonochorists P. elegans and P. bucculentus and the hermaphrodite P. fissidentatus, is basal to the above-mentioned radiations. Two novel species are described here: Pristionchus paulseni sp. n. from Taiwan and P. yamagatae sp. n. from Japan by means of morphology, morphometrics and genome-wide transcriptome sequence analysis. Previous phylotranscriptomic analysis of the complete Pristionchus genus recognized P. paulseni sp. n. as the sister species of P. fissidentatus, and thus its importance for macro-evolutionary studies. Specifically, the gonochorist P. paulseni sp. n. and the hermaphrodite P. fissidentatus form a species pair that is the sister group to all other described Pristionchus species. P. paulseni sp. n. has two distinct mouth forms, supporting the notion that the mouth dimorphism is ancestral in the genus Pristionchus.