English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences

MPS-Authors
/persons/resource/persons272209

Zaidem,  M
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons85266

Weigel,  D
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wan, W.-L., Zhang, L., Pruitt, R., Zaidem, M., Brugman, R., Ma, X., et al. (2019). Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. New Phytologist, 221(4), 2080-2095. doi:10.1111/nph.15497.


Cite as: https://hdl.handle.net/21.11116/0000-000A-6B67-B
Abstract
Pattern recognition receptors (PRRs) sense microbial patterns and activate innate immunity against attempted microbial invasions. The leucine-rich repeat receptor kinases (LRR-RK) FLS2 and EFR, and the LRR receptor protein (LRR-RP) receptors RLP23 and RLP42, respectively, represent prototypical members of these two prominent and closely related PRR families. We conducted a survey of Arabidopsis thaliana immune signaling mediated by these receptors to address the question of commonalities and differences between LRR-RK and LRR-RP signaling. Quantitative differences in timing and amplitude were observed for several early immune responses, with RP-mediated responses typically being slower and more prolonged than those mediated by RKs. Activation of RLP23, but not FLS2, induced the production of camalexin. Transcriptomic analysis revealed that RLP23-regulated genes represent only a fraction of those genes differentially expressed upon FLS2 activation. Several positive and negative regulators of FLS2-signaling play similar roles in RLP23 signaling. Intriguingly, the cytoplasmic receptor kinase BIK1, a positive regulator of RK signaling, acts as a negative regulator of RP-type immune receptors in a manner dependent on BIK1 kinase activity. Our study unveiled unexpected differences in two closely related receptor systems and reports a new negative role of BIK1 in plant immunity.