English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dispersion corrected r2SCAN based global hybrid functionals: r2SCANh, r2SCAN0, and r2SCAN50

MPS-Authors
/persons/resource/persons273665

Bursch,  Markus
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bursch, M., Neugebauer, H., Ehlert, S., & Grimme, S. (2022). Dispersion corrected r2SCAN based global hybrid functionals: r2SCANh, r2SCAN0, and r2SCAN50. The Journal of Chemical Physics, 156(13): 134105. doi:10.1063/5.0086040.


Cite as: https://hdl.handle.net/21.11116/0000-000A-70BD-3
Abstract
The regularized and restored semilocal meta-generalized gradient approximation (meta-GGA) exchange–correlation functional r2SCAN [Furness et al., J. Phys. Chem. Lett. 11, 8208–8215 (2020)] is used to create three global hybrid functionals with varying admixtures of Hartree–Fock “exact” exchange (HFX). The resulting functionals r2SCANh (10% HFX), r2SCAN0 (25% HFX), and r2SCAN50 (50% HFX) are combined with the semi-classical D4 London dispersion correction. The new functionals are assessed for the calculation of molecular geometries, main-group, and metalorganic thermochemistry at 26 comprehensive benchmark sets. These include the extensive GMTKN55 database, ROST61, and IONPI19 sets. It is shown that a moderate admixture of HFX leads to relative improvements of the mean absolute deviations for thermochemistry of 11% (r2SCANh-D4), 16% (r2SCAN0-D4), and 1% (r2SCAN50-D4) compared to the parental semi-local meta-GGA. For organometallic reaction energies and barriers, r2SCAN0-D4 yields an even larger mean improvement of 35%. The computation of structural parameters (geometry optimization) does not systematically profit from the HFX admixture. Overall, the best variant r2SCAN0-D4 performs well for both main-group and organometallic thermochemistry and is better or on par with well-established global hybrid functionals, such as PW6B95-D4 or PBE0-D4. Regarding systems prone to self-interaction errors (SIE4x4), r2SCAN0-D4 shows reasonable performance, reaching the quality of the range-separated ωB97X-V functional. Accordingly, r2SCAN0-D4 in combination with a sufficiently converged basis set [def2-QZVP(P)] represents a robust and reliable choice for general use in the calculation of thermochemical properties of both main-group and organometallic chemistry.