Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High Level Electronic Structure Calculation of Molecular Solid-State NMR Shielding Constants

MPG-Autoren
/persons/resource/persons216828

Poidevin,  Corentin
Research Group Auer, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216838

Stoychev,  Georgi L.
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons125031

Auer,  Alexander A.
Research Group Auer, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Poidevin, C., Stoychev, G. L., Riplinger, C., & Auer, A. A. (2022). High Level Electronic Structure Calculation of Molecular Solid-State NMR Shielding Constants. Journal of Chemical Theory and Computation, 18(4), 2408-2417. doi:10.1021/acs.jctc.1c01095.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-712F-3
Zusammenfassung
In this work, we present a quantum mechanics/molecular mechanics (QM/MM) approach for the computation of solid-state nuclear magnetic resonance (SS-NMR) shielding constants (SCs) for molecular crystals. Besides applying standard-DFT functionals like GGAs (PBE), meta-GGAs (TPSS), and hybrids (B3LYP), we apply a double-hybrid (DSD-PBEP86) functional as well as MP2, using the domain-based local pair natural orbital (DLPNO) formalism, to calculate the NMR SCs of six amino acid crystals. All the electronic structure methods used exhibit good correlation of the NMR shieldings with respect to experimental chemical shifts for both 1H and 13C. We also find that local electronic structure is much more important than the long-range electrostatic effects for these systems, implying that cluster approaches using all-electron/Gaussian basis set methods might offer great potential for predictive computations of solid-state NMR parameters for organic solids.