日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Amazonian mesoscale convective systems: Life cycle and propagation characteristics

MPS-Authors
/persons/resource/persons261120

Machado,  Luiz A. T.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Anselmo, E. M., Machado, L. A. T., Schumacher, C., & Kiladis, G. N. (2021). Amazonian mesoscale convective systems: Life cycle and propagation characteristics. International Journal of Climatology, 41(7), 3968-3981. doi:10.1002/joc.7053.


引用: https://hdl.handle.net/21.11116/0000-000A-6CCA-A
要旨
Convective system tracking was performed using 30-min GOES-13 infrared imagery over the Amazon region during 2014 and 2015. A total of 116,701 convective systems were identified and statistics on the probability of occurrence of track area, lifetime, and system velocity were analysed. Maps of the total and seasonal geographic density of trajectories and the geographic density of clusters at genesis, during propagation, and at dissipation were also assessed. The mean area and lifetime of the tracked systems was 4 × 104 km2 and 3 hr, respectively. The top 10% largest systems had areas >8 × 104 km2 and the top 10% longest lived systems lasted >7 hr. The geographical distribution of clusters identified on the coast and within the Amazon basin varied seasonally and their life cycle tracking showed that they are typically distinct from one another (i.e., it is relatively rare for systems to start at the coast and propagate 1,500 km to the centre of the basin). Although the average system velocity indicated a predominantly westward motion, a large spread in the direction of propagation was found. In particular, the probability of a meridional component of motion was generally the same for northward or southward directions and 35% of the zonal propagation was associated with eastward movement. The presence of Kelvin waves accounted for some of the eastward system motion, in addition to increasing the area and lifetime of storms compared to when Kelvin waves were not present.