Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm

MPG-Autoren
/persons/resource/persons239392

Panza,  P
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons224247

Maischein,  H-M
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273470

Koch,  I
Electron Microscopy, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272636

Flötenmeyer,  M
Electron Microscopy, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274261

Söllner,  C       
Department Genetics, Max Planck Institute for Developmental Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Panza, P., Sitko, A., Maischein, H.-M., Koch, I., Flötenmeyer, M., Wright, G., et al. (2015). The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm. Neural Development, 10: 23. doi:10.1186/s13064-015-0050-x.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-7888-6
Zusammenfassung
Background: In the visual system of most binocular vertebrates, the axons of retinal ganglion cells (RGCs) diverge at the diencephalic midline and extend to targets on both ipsi- and contralateral sides of the brain. While a molecular mechanism explaining ipsilateral guidance decisions has been characterized, less is known of how RGC axons cross the midline. Results: Here, we took advantage of the zebrafish, in which all RGC axons project contralaterally at the optic chiasm, to characterize Islr2 as an RGC receptor required for complete retinal axon midline crossing. We used a systematic extracellular protein-protein interaction screening assay to identify two Vasorin paralogs, Vasna and Vasnb, as specific Islr2 ligands. Antibodies against Vasna and Vasnb reveal cellular populations surrounding the retinal axon pathway, suggesting the involvement of these proteins in guidance decisions made by axons of the optic nerve. Specifically, Vasnb marks the membranes of a cellular barricade located anteriorly to the optic chiasm, a structure termed the "glial knot" in higher vertebrates. Loss of function mutations in either vasorin paralog, individually or combined, however, do not exhibit an overt retinal axon projection phenotype, suggesting that additional midline factors, acting either independently or redundantly, compensate for their loss. Analysis of Islr2 knockout mice supports a scenario in which Islr2 controls the coherence of RGC axons through the ventral midline and optic tract. Conclusions: Although stereotypic guidance of RGC axons at the vertebrate optic chiasm is controlled by multiple, redundant mechanisms, and despite the differences in ventral diencephalic tissue architecture, we identify a novel role for the LRR receptor Islr2 in ensuring proper axon navigation at the optic chiasm of both zebrafish and mouse.