English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Anisotropy-driven quantum criticality in an intermediate valence system

MPS-Authors
/persons/resource/persons126548

Brando,  Manuel
Manuel Brando, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126713

Küchler,  Robert
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Grbić, M. S., O'Farrell, E. C. T., Matsumoto, Y., Kuga, K., Brando, M., Küchler, R., et al. (2022). Anisotropy-driven quantum criticality in an intermediate valence system. Nature Communications, 13(1): 2141, pp. 1-8. doi:10.1038/s41467-022-29757-9.


Cite as: https://hdl.handle.net/21.11116/0000-000A-9508-5
Abstract
The nature of quantum criticality in intermetallic f-electron compounds exhibiting valence fluctuations is not well understood. Here, using a combination of experimental techniques, the authors attribute quantum criticality in YbAlB4 to the anisotropic hybridization between the conduction and f-electrons.
Intermetallic compounds containing f-electron elements have been prototypical materials for investigating strong electron correlations and quantum criticality (QC). Their heavy fermion ground state evoked by the magnetic f-electrons is susceptible to the onset of quantum phases, such as magnetism or superconductivity, due to the enhanced effective mass (m*) and a corresponding decrease of the Fermi temperature. However, the presence of f-electron valence fluctuations to a non-magnetic state is regarded an anathema to QC, as it usually generates a paramagnetic Fermi-liquid state with quasiparticles of moderate m*. Such systems are typically isotropic, with a characteristic energy scale T-0 of the order of hundreds of kelvins that require large magnetic fields or pressures to promote a valence or magnetic instability. Here we show the discovery of a quantum critical behaviour and a Lifshitz transition under low magnetic field in an intermediate valence compound alpha-YbAlB4. The QC origin is attributed to the anisotropic hybridization between the conduction and localized f-electrons. These findings suggest a new route to bypass the large valence energy scale in developing the QC.