Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Finding the Right Bricks for Molecular Legos: A Data Mining Approach to Organic Semiconductor Design

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

item_3384458.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kunkel, C., Schober, C., Margraf, J. T., Reuter, K., & Oberhofer, H. (2019). Finding the Right Bricks for Molecular Legos: A Data Mining Approach to Organic Semiconductor Design. Chemistry of Materials, 31(3), 969-978. doi:10.1021/acs.chemmater.8b04436.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-7DC9-8
Zusammenfassung
Improving charge carrier mobilities in organic semiconductors is a challenging task that has hitherto primarily been tackled by empirical structural tuning of promising core compounds. Knowledge-based methods can greatly accelerate such local exploration, while a systematic analysis of large chemical databases can point toward promising design strategies. Here, we demonstrate such data mining by clustering an in-house database of >64,000 organic molecular crystals for which two charge-transport descriptors, the electronic coupling and the reorganization energy, have been calculated from first principles. The clustering is performed according to the Bemis–Murcko scaffolds of the constituting molecules and according to the side groups with which these molecular backbones are functionalized. In both cases, we obtain statistically significant structure–property relationships with certain scaffolds (side groups) consistently leading to favorable charge-transport properties. Functionalizing promising scaffolds with favorable side groups results in engineered molecular crystals for which we indeed compute improved charge-transport properties.