English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Independent spatial waves of biochemical differentiation along the surface of chicken brain as revealed by the sequential expression of acetylcholinesterase

MPS-Authors
/persons/resource/persons274225

Layer,  PG
Department Molecular Biology Gierer, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons274227

Rommel,  S
Department Molecular Biology Gierer, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Layer, P., Rommel, S., Bülthoff, H., & Hengstenberg, R. (1988). Independent spatial waves of biochemical differentiation along the surface of chicken brain as revealed by the sequential expression of acetylcholinesterase. Cell and Tissue Research, 251(3), 587-595. doi:10.1007/BF00214007.


Cite as: https://hdl.handle.net/21.11116/0000-000A-7D49-9
Abstract
AChE-positive cells suddenly amass in a superficial layer of the neuroepithelium; this layer finally covers, in a sheat-like manner, the entire surface of the embryonic chicken brain. This feature is functionally not understood; however, it appears shortly after the neurons become post-mitotic, and the lateral extensions of this layer can easily be traced using histochemistry on serial brain sections. The layer can therefore be exploited to delineate spatially the waves of onset of biochemical tissue differentiation. We have studied whole brains between stages 11 and 30 and provide the first complete spatial schemes of brain differentiation based on computer-reconstructed, two- and three-dimensional maps. The brain does not differentiate in one smooth coherent wave, but instead five separate primary AChE-activation zones are detected: the first originating at stage 11 (ldquorhombencephalic waverdquo), the second at the same time (ldquomidbrain waverdquo), the third at stage 15 ("ldquotectal waverdquo). A fourth zone develops later, at stage 18, from the bottom part of the telencephalon to the top. Retinal development also starts at stage 18. In a given area, it appears that AChE-development shortly precedes that of the formation of major fiber tracts. AChE might therefore represent a prerequisite for fiber growth and pathfinding.