Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Period integrals associated to an affine Delsarte type hypersurface

MPG-Autoren
/persons/resource/persons236306

Tanabé,  Susumu
Max Planck Institute for Mathematics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tanabé, S. (2022). Period integrals associated to an affine Delsarte type hypersurface. Moscow Mathematical Journal, 22(1), 133-168. doi:10.17323/1609-4514-2022-22-1-133-168.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-7E7D-E
Zusammenfassung
We calculate the period integrals for a special class of affine hypersurfaces
(deformed Delsarte hypersurfaces) in an algebraic torus by the aid of their
Mellin transforms. A description of the relation between poles of Mellin
transforms of period integrals and the mixed Hodge structure of the cohomology
of the hypersurface is given. By interpreting the period integrals as solutions
to Pochhammer hypergeometric differential equation, we calculate concretely the
irreducible monodromy group of period integrals that correspond to the
compactification of the affine hypersurface in a complete simplicial toric
variety. As an application of the equivalence between oscillating integral for
Delsarte polynomial and quantum cohomology of a weighted projective space
$\mathbb{P}_{\bf B}$, we establish an equality between its Stokes matrix and
the Gram matrix of the full exceptional collection on $\mathbb{P}_{\bf B}$.