English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Distracting Linguistic Information Impairs Neural Tracking of Attended Speech

MPS-Authors
/persons/resource/persons145594

Dai,  Bohan
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

/persons/resource/persons122

McQueen,  James M.
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
Research Associates, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons199761

Terporten,  Rene
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

/persons/resource/persons69

Hagoort,  Peter
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

/persons/resource/persons197488

Kösem,  Anne
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
Lyon Neuroscience Research Center (CRNL);

External Resource

Data and code available on request
(Supplementary material)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
Citation

Dai, B., McQueen, J. M., Terporten, R., Hagoort, P., & Kösem, A. (2022). Distracting Linguistic Information Impairs Neural Tracking of Attended Speech. Current Research in Neurobiology, 3: 100043. doi:10.1016/j.crneur.2022.100043.


Cite as: http://hdl.handle.net/21.11116/0000-000A-82C7-2
Abstract
Listening to speech is difficult in noisy environments, and is even harder when the interfering noise consists of intelligible speech as compared to unintelligible sounds. This suggests that the competing linguistic information interferes with the neural processing of target speech. Interference could either arise from a degradation of the neural representation of the target speech, or from increased representation of distracting speech that enters in competition with the target speech. We tested these alternative hypotheses using magnetoencephalography (MEG) while participants listened to a target clear speech in the presence of distracting noise-vocoded speech. Crucially, the distractors were initially unintelligible but became more intelligible after a short training session. Results showed that the comprehension of the target speech was poorer after training than before training. The neural tracking of target speech in the delta range (1–4 Hz) reduced in strength in the presence of a more intelligible distractor. In contrast, the neural tracking of distracting signals was not significantly modulated by intelligibility. These results suggest that the presence of distracting speech signals degrades the linguistic representation of target speech carried by delta oscillations.