Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Adaptive cognitive maps for curved surfaces in the 3D world

MPG-Autoren
/persons/resource/persons227431

Kim,  Misun
Department Psychology (Doeller), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons221475

Doeller,  Christian F.
Department Psychology (Doeller), MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Institute of Psychology, University of Leipzig, Germany;
Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kim, M., & Doeller, C. F. (2022). Adaptive cognitive maps for curved surfaces in the 3D world. Cognition, 225: 105126. doi:10.1016/j.cognition.2022.105126.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-8C46-A
Zusammenfassung
Terrains in a 3D world can be undulating. Yet, most prior research has exclusively investigated spatial representations on a flat surface, leaving a 2D cognitive map as the dominant model in the field. Here, we investigated whether humans represent a curved surface by building a dimension-reduced flattened 2D map or a full 3D map. Participants learned the location of objects positioned on a flat and curved surface in a virtual environment by driving on the concave side of the surface (Experiment 1), driving and looking vertically (Experiment 2), or flying (Experiment 3). Subsequently, they were asked to retrieve either the path distance or the 3D Euclidean distance between the objects. Path distance estimation was good overall, but we found a significant underestimation bias for the path distance on the curve, suggesting an influence of potential 3D shortcuts, even though participants were only driving on the surface. Euclidean distance estimation was better when participants were exposed more to the global 3D structure of the environment by looking and flying. These results suggest that the representation of the 2D manifold, embedded in a 3D world, is neither purely 2D nor 3D. Rather, it is flexible and dependent on the behavioral experience and demand.