English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia

MPS-Authors
/persons/resource/persons248823

Mansouri,  Siavash
Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224330

Savai,  Rajkumar
Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

/persons/resource/persons224334

Seeger,  Werner
Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hirani, D., Alvira, C. M., Danopoulos, S., Milla, C., Donato, M., Tian, L., et al. (2022). Macrophage-derived IL-6 trans-signalling as a novel target in the pathogenesis of bronchopulmonary dysplasia. EUROPEAN RESPIRATORY JOURNAL, 59(2): 2002248. doi:10.1183/13993003.02248-2020.


Cite as: https://hdl.handle.net/21.11116/0000-000A-8DD3-9
Abstract
Rationale Premature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive. Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental BPD. Methods and results First, transcriptomic analysis with in silico cellular deconvolution identified a lung intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A, Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly via Kruppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs. Conclusion We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease.