English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Genome-wide analysis of local chromatin packing in Arabidopsis thaliana

MPS-Authors
/persons/resource/persons273615

Wang,  C
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272558

Liu,  C
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271416

Schwab,  R
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271499

Becker,  C
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271710

Lanz,  C
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons85266

Weigel,  Detlef
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, C., Liu, C., Roquiero, D., Grimm, D., Schwab, R., Becker, C., et al. (2015). Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Research, 25(2), 246-256. doi:10.1101/gr.170332.113.


Cite as: https://hdl.handle.net/21.11116/0000-000A-8E58-4
Abstract
The spatial arrangement of interphase chromosomes in the nucleus is important for gene expression and genome function in animals and in plants. The recently developed Hi-C technology is an efficacious method to investigate genome packing. Here we present a detailed Hi-C map of the three-dimensional genome organization of the plant Arabidopsis thaliana. We find that local chromatin packing differs from the patterns seen in animals, with kilobasepair-sized segments that have much higher intrachromosome interaction rates than neighboring regions, representing a dominant local structural feature of genome conformation in A. thaliana. These regions, which appear as positive strips on two-dimensional representations of chromatin interaction, are enriched in epigenetic marks H3K27me3, H3.1, and H3.3. We also identify more than 400 insulator-like regions. Furthermore, although topologically associating domains (TADs), which are prominent in animals, are not an obvious feature of A. thaliana genome packing, we found more than 1000 regions that have properties of TAD boundaries, and a similar number of regions analogous to the interior of TADs. The insulator-like, TAD-boundary-like, and TAD-interior-like regions are each enriched for distinct epigenetic marks and are each correlated with different gene expression levels. We conclude that epigenetic modifications, gene density, and transcriptional activity combine to shape the local packing of the A. thaliana nuclear genome.