日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Giant spin Hall effect and spin-orbit torques in 5d transition metal-aluminum alloys from extrinsic scattering

MPS-Authors
/persons/resource/persons274790

Wang,  Peng
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;
International Max Planck Research School for Science and Technology of Nano-Systems, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons263245

Migliorini,  Andrea
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons259905

Yang,  See-Hun
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons262335

Jeon,  Jae-Chun
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260841

Kostanovskiy,  Ilya
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260281

Meyerheim,  Holger
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons260920

Han,  Hyeon
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons259903

Deniz,  Hakan
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons245678

Parkin,  Stuart S. P.       
Nano-Systems from Ions, Spins and Electrons, Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
付随資料 (公開)
There is no public supplementary material available
引用

Wang, P., Migliorini, A., Yang, S.-H., Jeon, J.-C., Kostanovskiy, I., Meyerheim, H., Han, H., Deniz, H., & Parkin, S. S. P. (2022). Giant spin Hall effect and spin-orbit torques in 5d transition metal-aluminum alloys from extrinsic scattering. Advanced Materials, 34(23):. doi:10.1002/adma.202109406.


引用: https://hdl.handle.net/21.11116/0000-000A-9033-9
要旨
The generation of spin currents from charge currents via the spin Hall effect (SHE) is of fundamental and technological interest. Here, some of the largest SHEs yet observed via extrinsic scattering are found in a large class of binary compounds formed from a 5d element and aluminum, with a giant spin Hall angle (SHA) of ≈1 in the compound Os22Al78. A critical composition of the 5d element is found at which there is a structural phase boundary between poorly and highly textured crystalline material, where the SHA exhibits its largest value. Furthermore, a systematic increase is found in the spin Hall conductivity (SHC) and SHA at this critical composition as the atomic number of the 5d element is systematically increased. This clearly shows that the SHE and SHC are derived from extrinsic scattering mechanisms related to the potential mismatch between the 5d element and Al. These studies show the importance of extrinsic mechanisms derived from potential mismatch as a route to obtaining large spin Hall angles with high technological impact. Indeed, it is demonstrated that a state-of-the-art racetrack device has a several-fold increased current-induced domain wall efficiency using these materials as compared to prior-art materials.