English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

α/β coiled coils

MPS-Authors
/persons/resource/persons271510

Hartmann,  MD
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Molecular Recognition and Catalysis Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272710

Bassler,  J
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons273537

Karamichali,  I
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons78342

Lupas,  AN
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271242

Hernandez Alvarez,  B
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Conservation of Protein Structure and Function Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hartmann, M., Mendler, C., Bassler, J., Karamichali, I., Ridderbusch, O., Lupas, A., et al. (2016). α/β coiled coils. eLife, 5: e11861. doi:10.7554/eLife.11861.


Cite as: https://hdl.handle.net/21.11116/0000-000A-9267-D
Abstract
Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold.