日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Implications of Occupational Disorder on Ion Mobility in Li4Ti5O12 Battery Materials

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Heenen, H. H., Scheurer, C., & Reuter, K. (2017). Implications of Occupational Disorder on Ion Mobility in Li4Ti5O12 Battery Materials. Nano Letters, 17(6), 3884-3888. doi:10.1021/acs.nanolett.7b01400.


引用: https://hdl.handle.net/21.11116/0000-000A-BB85-D
要旨
Lithium–titanium-oxide (Li4Ti5O12, LTO) is unique among battery materials due to its exceptional cyclability and high rate capability. This performance is believed to derive at least partly from the occupational disorder introduced via mixed Li/Ti occupancy in the LTO spinel-like structure. We explore the vast configuration space accessible during high-temperature LTO synthesis by Monte Carlo sampling and indeed find lowest-energy structures to be characterized by a high degree of microscopic inhomogeneity. Dynamical simulations in corresponding configurations reveal the dominant fraction of Li ions to be immobile on nanosecond time scales. However, Ti antisite-like defects stabilized by the configurational disorder give rise to a novel correlated ion diffusion mechanism. The resulting fast but localized diffusion could be a key element in the sudden rise in conductivity found in LTO in the early stages of charging and questions the validity of ion mobility measurements for this and other configurationally disordered materials.