English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effector and regulator: diverse functions of C. elegans C-type lectin-like domain proteins

MPS-Authors
/persons/resource/persons222033

Schulenburg,  Hinrich
Max Planck Fellow Group Antibiotic Resistance Evolution, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

journal.ppat.1009454.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Pees, B., Yang, W., Kloock, A., Petersen, C., Peters, L., Fan, L., et al. (2021). Effector and regulator: diverse functions of C. elegans C-type lectin-like domain proteins. PLoS Pathogens, 17: e1009454. doi:10.1371/journal.ppat.1009454.


Cite as: https://hdl.handle.net/21.11116/0000-000A-9728-F
Abstract
In C. elegans, 283 clec genes encode a highly diverse family of C-type lectin-like domain (CTLD) proteins. Since vertebrate CTLD proteins have characterized functions in defense responses against pathogens and since expression of C. elegans clec genes is pathogen-dependent, it is generally assumed that clec genes function in C. elegans immune k. However, little is known about the relative contribution and exact function of CLEC proteins in C. elegans immunity. Here, we focused on the C. elegans clec gene clec-4, whose expression is highly upregulated by pathogen infection, and its paralogs clec-41 and clec-42. We found that, while mutation of clec-4 resulted in enhanced resistance to the Gram-positive pathogen Bacillus thuringiensis MYBt18247 (Bt247), inactivation of clec-41 and clec-42 by RNAi enhanced susceptibility to Bt247. Further analyses revealed that enhanced resistance of clec-4 mutants to Bt247 was due to an increase in feeding cessation on the pathogen and consequently a decrease in pathogen load. Moreover, clec-4 mutants exhibited feeding deficits also on non-pathogenic bacteria that were in part reflected in the clec-4 gene expression profile, which overlapped with gene sets affected by starvation or mutation in nutrient sensing pathways. However, loss of CLEC-4 function only mildly affected life-history traits such as fertility, indicating that clec-4 mutants are not subjected to dietary restriction. While CLEC-4 function appears to be associated with the regulation of feeding behavior, we show that CLEC-41 and CLEC-42 proteins likely function as bona fide immune effector proteins that have bacterial binding and antimicrobial capacities. Together, our results exemplify functional diversification within clec gene paralogs.