Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Floquet renormalization group approach to the periodically driven Kondo model

MPG-Autoren
/persons/resource/persons245033

Kennes,  D. M.
Institut für Theorie der Statistischen Physik, RWTH Aachen, 52056 Aachen, Germany and JARA – Fundamentals of Future Information Technology;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevB.106.115440.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bruch, V., Pletyukhov, M., Schoeller, H., & Kennes, D. M. (2022). Floquet renormalization group approach to the periodically driven Kondo model. Physical Review B, 106(11): 115440. doi:10.1103/PhysRevB.106.115440.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-9902-7
Zusammenfassung
We study the interplay of strong correlations and coherent driving by considering the strong coupling Kondo model driven by a time-periodic bias voltage. Combining a recent nonequilibrium renormalization group method with Floquet theory, we find that by the coherent dressing of the driving field side replicas of the Kondo resonance emerge in the conductance, which are not completely washed out by the decoherence induced by the driving. We show that to accurately capture the interplay of driving and strong correlations one needs to go beyond simple phenomenological pictures, which underestimate decoherence, or adiabatic approximations, highlighting the relevance of non-Markovian memory effects. Within our method the differential conductance shows good quantitative agreement with experimental data in the full crossover regime from weak to strong driving. We analyze memory effects in detail based on the response to short voltage pulses.