English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Temperature-driven reorganization of electronic order in CsV3Sb5

MPS-Authors
/persons/resource/persons260774

Chen,  D.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126847

Shekhar,  C.
Chandra Shekhar, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Stahl, Q., Chen, D., Ritschel, T., Shekhar, C., Sadrollahi, E., Rahn, M., et al. (2022). Temperature-driven reorganization of electronic order in CsV3Sb5. Physical Review B, 105(19): 195136, pp. 1-7. doi:10.1103/PhysRevB.105.195136.


Cite as: https://hdl.handle.net/21.11116/0000-000A-A015-9
Abstract
We report x-ray diffraction studies of the electronic ordering instabilities in the kagome material CsV3Sb5 as a function of temperature and applied magnetic field. Our zero-field measurements between 10 and 120 K reveal an unexpected reorganization of the three-dimensional electronic order in the bulk of CsV3Sb5: At low temperatures, a 2×2×2 superstructure modulation due to electronic order is observed, which upon warming changes to a 2×2×4 superstructure at 60 K. The electronic order-order transition discovered here involves a change in the stacking of electronically ordered V3Sb5 layers, which coincides with anomalies previously observed in magnetotransport measurements. This implies that the temperature-dependent three-dimensional electronic order plays a decisive role for transport properties, which are related to the Berry curvature of the V bands. We also show that the bulk electronic order in CsV3Sb5 breaks the sixfold rotational symmetry of the underlying P6/mmm lattice and perform a crystallographic analysis of the 2×2×2 phase. The latter yields two possible superlattices, namely a staggered star-of-David and a staggered inverse star-of-David structure. Applied magnetic fields up to 10 T have no effect on the x-ray diffraction signal. This, however, does not rule out time-reversal symmetry breaking in CsV3Sb5. © 2022 American Physical Society.