English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural insights into the mechanism of archaellar rotational switching

MPS-Authors
/persons/resource/persons261279

Bange,  Gert
Max Planck Fellow Molecular Physiology of Microbes, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;
Philipps-Universität Marburg, Center for Synthetic Microbiology;
Philipps-Universität Marburg, Department Chemistry;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Altegoer, F., Quax, T. E. F., Weiland, P., Nussbaum, P., Giammarinaro I, P., Patro, M., et al. (2022). Structural insights into the mechanism of archaellar rotational switching. Nature Communications, 13(1): 2857. doi:10.1038/s41467-022-30358-9.


Cite as: https://hdl.handle.net/21.11116/0000-000A-9CE0-9
Abstract
Signal transduction via phosphorylated CheY towards the flagellum and the archaellum involves a conserved mechanism of CheY phosphorylation and subsequent conformational changes within CheY. This mechanism is conserved among bacteria and archaea, despite substantial differences in the composition and architecture of archaellum and flagellum, respectively. Phosphorylated CheY has higher affinity towards the bacterial C-ring and its binding leads to conformational changes in the flagellar motor and subsequent rotational switching of the flagellum. In archaea, the adaptor protein CheF resides at the cytoplasmic face of the archaeal C-ring formed by the proteins ArlCDE and interacts with phosphorylated CheY. While the mechanism of CheY binding to the C-ring is well-studied in bacteria, the role of CheF in archaea remains enigmatic and mechanistic insights are absent. Here, we have determined the atomic structures of CheF alone and in complex with activated CheY by X-ray crystallography. CheF forms an elongated dimer with a twisted architecture. We show that CheY binds to the C-terminal tail domain of CheF leading to slight conformational changes within CheF. Our structural, biochemical and genetic analyses reveal the mechanistic basis for CheY binding to CheF and allow us to propose a model for rotational switching of the archaellum.
Signal transduction via phosphorylated CheY is conserved in bacteria and archaea. In this study, the authors employ structural biochemistry combined with cell biology to delineate the mechanism of CheY recognition by the adaptor protein CheF.