English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

<p>Identification of cis-regulatory modules for adeno-associated virus-based cell-type-specific targeting in the retina and brain</p>

MPS-Authors
/persons/resource/persons262571

Gu,  Lei
Epigenetics, Max Planck Institute for Heart and Lung Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lin, C.-H., Sun, Y., Chan, C. S. Y., Wu, M.-R., Gu, L., Davis, A. E., et al. (2022). <p>Identification of cis-regulatory modules for adeno-associated virus-based cell-type-specific targeting in the retina and brain</p>. JOURNAL OF BIOLOGICAL CHEMISTRY, 298(4): 101674. doi:10.1016/j.jbc.2022.101674.


Cite as: https://hdl.handle.net/21.11116/0000-000A-9D47-6
Abstract
Adeno-associated viruses (AAVs) targeting specific cell types are powerful tools for studying distinct cell types in the central nervous system (CNS). Cis-regulatory modules (CRMs), e.g., enhancers, are highly cell-type-specific and can be integrated into AAVs to render cell type specificity. Chromatin accessibility has been commonly used to nominate CRMs, which have then been incorporated into AAVs and tested for cell type specificity in the CNS. However, chromatin accessibility data alone cannot accurately annotate active CRMs, as many chromatin-accessible CRMs are not active and fail to drive gene expression in vivo. Using available large-scale datasets on chromatin accessibility, such as those published by the ENCODE project, here we explored strategies to increase efficiency in identifying active CRMs for AAV-based cell-type specific labeling and manipulation. We found that prescreening of chromatin-accessible putative CRMs based on the density of cell-type-specific transcription factor binding sites (TFBSs) can significantly increase efficiency in identifying active CRMs. In addition, generation of synthetic CRMs by stitching chromatin-accessible regions flanking cell-type specific genes can render cell type specificity in many cases. Using these straightforward strategies, we generated AAVs that can target the extensively studied interneuron and glial cell types in the retina and brain. Both strategies utilize available genomic datasets and can be employed to generate AAVs targeting specific cell types in CNS without conducting comprehensive screening and sequencing experiments, making a step forward in cell-type-specific research.