English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Elucidating Lewis acidity of metal sites in MFU-4l metal-organic frameworks: N2O and CO2 adsorption in MFU-4l, CuI-MFU-4l and Li-MFU-4l

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Denysenko, D., Jelic, J., Magdysyuk, O. V., Reuter, K., & Volkmer, D. (2015). Elucidating Lewis acidity of metal sites in MFU-4l metal-organic frameworks: N2O and CO2 adsorption in MFU-4l, CuI-MFU-4l and Li-MFU-4l. Microporous and Mesoporous Materials, 216, 146-150. doi:/10.1016/j.micromeso.2015.03.014.


Cite as: https://hdl.handle.net/21.11116/0000-000A-C152-F
Abstract
The interaction strength of N2O and CO2 molecules with different Lewis-acidic sites within MFU-4l–type metal-organic frameworks was studied via gas sorption measurements and density-functional theory calculations. MFU-4l comprising Zn–Cl units shows only physisorption of both gases. Introduction of Li into the parent MFU-4l framework leads to a remarkable increase of binding strength of both N2O and CO2 showing considerable Lewis acidity of LiI centers. CuI-MFU-4l shows even stronger binding of N2O, as compared to Li-MFU-4l, whereas CO2 doesn't bind to CuI centers. Preferential binding of N2O to CuI centers was also confirmed by in situ synchrotron X-ray powder diffraction measurements. These results show that CuI-MFU-4l can be considered as a material for selective N2O adsorption.