日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Tunneling ionization in ultrashort laser pulses: Edge effect and remedy

MPS-Authors
/persons/resource/persons30684

Klaiber,  Michael
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons232227

Lv,  Q. Z.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30572

Hatsagortsyan,  Karen Zaven
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30659

Keitel,  Christoph H.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

2201.07589.pdf
(プレプリント), 6MB

付随資料 (公開)
There is no public supplementary material available
引用

Klaiber, M., Lv, Q. Z., Hatsagortsyan, K. Z., & Keitel, C. H. (2022). Tunneling ionization in ultrashort laser pulses: Edge effect and remedy. Physical Review A, 105(6):. doi:10.1103/PhysRevA.105.063109.


引用: https://hdl.handle.net/21.11116/0000-000A-A343-2
要旨
Tunneling ionization of an atom in ultrashort laser pulses is considered.
When the driving laser pulse is switched-on and -off with a steep slope, the
photoelectron momentum distribution (PMD) shows an edge-effect because of the
photoelectron diffraction by the time-slit of the pulse. The trivial
diffraction pattern of the edge effect consisting of fast oscillations in the
PMD disguises in the deep nonadiabatic regime the physically more interesting
features in the spectrum which originate from the photoelectron dynamics. We
point out the precise conditions how to avoid this scenario experimentally and
if unavoidable in theory we put forward an efficient method to remove the
edge-effect in the PMD. This allows to highlight the nonadiabatic dynamical
features of the PMD, which is indispensable for their further investigation in
complex computationally demanding scenarios. The method is firstly demonstrated
on a one-dimensional problem, and further applied in three-dimensions for the
attoclock. The method is validated by a comparison of analytical results via
the strong-field approximation with numerical solutions of the time-dependent
Schr\"odinger equation.