Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structure and gating behavior of the human integral membrane protein VDAC1 in a lipid bilayer

MPG-Autoren
/persons/resource/persons204163

Najbauer,  E. E.
Research Group of Solid State NMR Spectroscopy-2, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons230211

Tekwani Movellan,  K.
Research Group of Solid State NMR Spectroscopy-2, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons36496

Giller,  K.
Department of NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons14824

Becker,  S.
Department of NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons15147

Griesinger,  C.       
Department of NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons206080

Andreas,  L. B.
Research Group of Solid State NMR Spectroscopy-2, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

3389582.pdf
(Verlagsversion), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Najbauer, E. E., Tekwani Movellan, K., Giller, K., Benz, R., Becker, S., Griesinger, C., et al. (2022). Structure and gating behavior of the human integral membrane protein VDAC1 in a lipid bilayer. Journal of the American Chemical Society, 144(7), 2953-2967. doi:10.1021/jacs.1c09848.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-B563-A
Zusammenfassung
The voltage-dependent anion channel (VDAC), the most abundant protein in the outer mitochondrial membrane, is responsible for the transport of all ions and metabolites into and out of mitochondria. Larger than any of the beta-barrel structures determined to date by magic-angle spinning (MAS) NMR, but smaller than the size limit of cryo-electron microscopy (cryo-EM), VDAC1's 31 kDa size has long been a bottleneck in determining its structure in a near-native lipid bilayer environment. Using a single two-dimensional (2D) crystalline sample of human VDAC1 in lipids, we applied proton-detected fast magic-angle spinning NMR spectroscopy to determine the arrangement of beta strands. Combining these data with long-range restraints from a spin-labeled sample, chemical shift-based secondary structure prediction, and previous MAS NMR and atomic force microscopy (AFM) data, we determined the channel's structure at a 2.2 angstrom root-mean-square deviation (RMSD). The structure, a 19-stranded beta-barrel, with an N-terminal alpha-helix in the pore is in agreement with previous data in detergent, which was questioned due to the potential for the detergent to perturb the protein's functional structure. Using a quintuple mutant implementing the channel's closed state, we found that dynamics are a key element in the protein's gating behavior, as channel closure leads to the destabilization of not only the C-terminal barrel residues but also the alpha 2 helix. We showed that cholesterol, previously shown to reduce the frequency of channel closure, stabilizes the barrel relative to the N-terminal helix. Furthermore, we observed channel closure through steric blockage by a drug shown to selectively bind to the channel, the Bcl2-antisense oligonucleotide G3139.