Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Repositioning food and drug administration-approved drugs for inhibiting Biliverdin IXβ reductase B as a novel thrombocytopenia therapeutic target

MPG-Autoren
/persons/resource/persons275672

Kim,  M.
Department of NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons32617

Gapsys,  V.
Research Group of Computational Biomolecular Dynamics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons14970

de Groot,  B. L.
Research Group of Computational Biomolecular Dynamics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons15147

Griesinger,  C.       
Department of NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kim, M., Ha, J.-H., Choi, J., Kim, B.-R., Gapsys, V., Lee, K. O., et al. (2022). Repositioning food and drug administration-approved drugs for inhibiting Biliverdin IXβ reductase B as a novel thrombocytopenia therapeutic target. Journal of Medicinal Chemistry, 65(3), 2548-2557. doi:10.1021/acs.jmedchem.1c01664.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-AA7C-C
Zusammenfassung
Biliverdin IX beta reductase B (BLVRB) has recently been proposed as a novel therapeutic target for thrombocytopenia through its reactive oxygen species (ROS)-associated mechanism. Thus, we aim at repurposing drugs as new inhibitors of BLVRB. Based on IC50 (<5 mu M), we have identified 20 compounds out of 1496 compounds from the Food and Drug Administration (FDA)-approved library and have clearly mapped their binding sites to the active site. Furthermore, we show the detailed BLVRB-binding modes and thermodynamic properties (Delta H, Delta S, and K-D) with nuclear magnetic resonance (NMR) and isothermal titration calorimetry together with complex structures of eight water-soluble compounds. We anticipate that the results will serve as a novel platform for further in-depth studies on BLVRB effects for related functions such as ROS accumulation and megakaryocyte differentiation, and ultimately treatments of platelet disorders.