English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Freezing revisited: coordinated autonomic and central optimization of threat coping

MPS-Authors
/persons/resource/persons217460

Dayan,  P
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Roelofs, K., & Dayan, P. (2022). Freezing revisited: coordinated autonomic and central optimization of threat coping. Nature Reviews Neuroscience, Epub ahead. doi:10.1038/s41583-022-00608-2.


Cite as: http://hdl.handle.net/21.11116/0000-000A-A5E9-5
Abstract
Animals have sophisticated mechanisms for coping with danger. Freezing is a unique state that, upon threat detection, allows evidence to be gathered, response possibilities to be previsioned and preparations to be made for worst-case fight or flight. We propose that - rather than reflecting a passive fear state - the particular somatic and cognitive characteristics of freezing help to conceal overt responses, while optimizing sensory processing and action preparation. Critical for these functions are the neurotransmitters noradrenaline and acetylcholine, which modulate neural information processing and also control the sympathetic and parasympathetic branches of the autonomic nervous system. However, the interactions between autonomic systems and the brain during freezing, and the way in which they jointly coordinate responses, remain incompletely explored. We review the joint actions of these systems and offer a novel computational framework to describe their temporally harmonized integration. This reconceptualization of freezing has implications for its role in decision-making under threat and for psychopathology.