English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Merging operando and computational X-ray spectroscopies to study the oxygen evolution reaction

MPS-Authors
/persons/resource/persons104341

Velasco Vélez,  Juan
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogeneous Reactions, Max-Planck-Institut für Chemische Energiekonversion;

/persons/resource/persons22163

Teschner,  Detre
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogeneous Reactions, Max-Planck-Institut für Chemische Energiekonversion;

/persons/resource/persons183245

Carbonio,  Emilia
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Helmholtz Zentrum Berlin für Materialien und Energie GmbH;

/persons/resource/persons21743

Knop-Gericke,  Axel
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogeneous Reactions, Max-Planck-Institut für Chemische Energiekonversion;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogeneous Reactions, Max-Planck-Institut für Chemische Energiekonversion;

/persons/resource/persons135780

Jones,  Travis
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Streibel, V., Velasco Vélez, J., Teschner, D., Carbonio, E., Knop-Gericke, A., Schlögl, R., et al. (2022). Merging operando and computational X-ray spectroscopies to study the oxygen evolution reaction. Current Opinion in Electrochemistry, 35: 101039. doi:/10.1016/j.coelec.2022.101039.


Cite as: https://hdl.handle.net/21.11116/0000-000A-A82E-6
Abstract
The combination of operando and computational X-ray spectroscopies has shown promise for building accurate models of active catalyst surfaces. Operando spectroscopy captures metastable active surfaces and computational spectroscopy uses this information to aid in building models for first principles reaction simulations. Herein, we review recent efforts and outline future opportunities to study the oxygen evolution reaction (OER) by combining operando spectroscopies and first principles modeling. We begin by showcasing how explicit simulation of operando-collected spectra has helped validate an OER mechanism over Ir-based catalysts involving electron-deficient oxygen, or OI−. We continue by reviewing efforts on 3d transition metal (TM) oxyhydroxides, where operando studies again suggest OI− is critical. While for these materials, changes in OI− coverage have been argued to cause qualitative mechanistic differences, comparative operando and computational spectroscopic studies are still lacking. We close by outlining how such comparative studies would aid in testing mechanistic claims on 3d TM oxyhydroxides.