English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A 32-element loop/dipole hybrid array for human head imaging at 7 T

MPS-Authors
/persons/resource/persons133464

Avdievich,  NI
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons260961

Nikulin,  AV
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons215122

Ruhm,  L
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons230667

Glang,  F
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Avdievich, N., Nikulin, A., Ruhm, L., Magill, A., Glang, F., Henning, A., et al. (2022). A 32-element loop/dipole hybrid array for human head imaging at 7 T. Magnetic Resonance in Medicine, 88(4), 1912-1926. doi:10.1002/mrm.29347.


Cite as: https://hdl.handle.net/21.11116/0000-000A-A896-F
Abstract

Purpose: To improve whole-brain SNR at 7 Tesla, a novel 32-element hybrid human head array coil was developed, constructed, and tested.

Methods: Our general design strategy is based on 2 major ideas: Firstly, following suggestions of previous works based on the ultimate intrinsic SNR theory, we combined loops and dipoles for improvement of SNR near the head center. Secondly, we minimized the total number of array elements by using a hybrid combination of transceive (TxRx) and receive (Rx) elements. The new hybrid array consisted of 8 folded-end TxRx-dipole antennas and 3 rows of 24 Rx-loops all placed in a single layer on the surface of a tight-fit helmet.

Results: The developed array significantly improved SNR in vivo both near the center (∼20%) and at the periphery (∼20% to 80%) in comparison to a common commercial array coil with 8 transmit (Tx) and 32 Rx-elements. Whereas 24 loops alone delivered central SNR very similar to that of the commercial coil, the addition of complementary dipole structures provided further improvement. The new array also provided ∼15% higher Tx efficiency and better longitudinal coverage than that of the commercial array.

Conclusion: The developed array coil demonstrated advantages in combining complementary TxRx and Rx resonant structures, that is, TxRx-dipoles and Rx-loops all placed in a single layer at the same distance to the head. This strategy improved both SNR and Tx-performance, as well as simplified the total head coil design, making it more robust.


Purpose: To improve whole-brain SNR at 7 Tesla, a novel 32-element hybrid human head array coil was developed, constructed, and tested.

Methods: Our general design strategy is based on 2 major ideas: Firstly, following suggestions of previous works based on the ultimate intrinsic SNR theory, we combined loops and dipoles for improvement of SNR near the head center. Secondly, we minimized the total number of array elements by using a hybrid combination of transceive (TxRx) and receive (Rx) elements. The new hybrid array consisted of 8 folded-end TxRx-dipole antennas and 3 rows of 24 Rx-loops all placed in a single layer on the surface of a tight-fit helmet.

Results: The developed array significantly improved SNR in vivo both near the center (∼20%) and at the periphery (∼20% to 80%) in comparison to a common commercial array coil with 8 transmit (Tx) and 32 Rx-elements. Whereas 24 loops alone delivered central SNR very similar to that of the commercial coil, the addition of complementary dipole structures provided further improvement. The new array also provided ∼15% higher Tx efficiency and better longitudinal coverage than that of the commercial array.

Conclusion: The developed array coil demonstrated advantages in combining complementary TxRx and Rx resonant structures, that is, TxRx-dipoles and Rx-loops all placed in a single layer at the same distance to the head. This strategy improved both SNR and Tx-performance, as well as simplified the total head coil design, making it more robust.