English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The importance of being regular: Caenorhabditis elegans and Pristionchus pacificus defecation mutants are hypersusceptible to bacterial pathogens

MPS-Authors
/persons/resource/persons274134

Rae,  R
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271111

Witte,  H
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons50497

Rödelsperger,  C
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271084

Sommer,  RJ
Department Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rae, R., Witte, H., Rödelsperger, C., & Sommer, R. (2012). The importance of being regular: Caenorhabditis elegans and Pristionchus pacificus defecation mutants are hypersusceptible to bacterial pathogens. International Journal for Parasitology, 42(8), 747-753. doi:10.1016/j.ijpara.2012.05.005.


Cite as: https://hdl.handle.net/21.11116/0000-000A-A923-0
Abstract
Bacterial pathogens have shaped the evolution and survival of organisms throughout history, but little is known about the evolution of virulence mechanisms and the counteracting defence strategies of host species. The nematode model organisms, Caenorhabditis elegans and Pristionchus pacificus, feed on a wealth of bacteria in their natural soil environment, some of which can cause mortality. Previously, we have shown that these nematodes differ in their susceptibility to a range of human and insect pathogenic bacteria, with P. pacificus showing extreme resistance compared with C. elegans. Here, we isolated 400 strains of Bacillus from soil samples and fed their spores to both nematodes. Spores of six Bacillus strains were found to kill C. elegans but not P. pacificus. While the majority of Bacillus strains are benign to nematodes, observed pathogenicity is restricted to either the spore or the vegetative stage. We used the rapid C. elegans killer strain (Bacillus sp. 142) to conduct a screen for hypersusceptible P. pacificus mutants. Two P. pacificus mutants with severe muscle defects and an extended defecation cycle that die rapidly on Bacillus spores were isolated. These genes were identified to be homologous to C. elegans, unc-22 and unc-13. To test whether a similar relationship between defecation and bacterial pathogenesis exists in C. elegans, we used five known defecation mutants. Quantification of the defecation cycle in mutants also revealed a severe effect on survival in C. elegans. Thus, intestinal peristalsis is critical to nematode health and contributes significantly to survival when fed Gram-positive bacteria.